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Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments  
protect against gastrointestinal and urinary tract infections 
by acting as decoys for bacterial fimbrial lectin FimH. By com-
bining AlphaFold2 predictions with X-ray crystallography 
and cryo-EM, we show that these proteins contain a bipartite 
decoy module whose new fold presents the high-mannose 
glycan recognized by FimH. The structure rationalizes UMOD 
mutations associated with kidney diseases and visualizes a 
key epitope implicated in cast nephropathy.

GP2 and UMOD are structurally related homopolymeric glyco-
proteins1 (Extended Data Fig. 1a) that prevent bacterial pathogen 
adhesion2,3 and are implicated in multiple pathologies of the intes-
tine and the urinary tract, respectively4,5. Recent studies revealed 
how the C-terminal zona pellucida (ZP) module of UMOD  
mediates its polymerization6,7. However, there is no detailed infor-
mation on the UMOD N-terminal branch region recognized by 
FimH8, suggested to contain a domain with eight cysteines (D8C) 
conserved in different vertebrate proteins9, and it is unknown 
whether the equivalent region of GP2 is also responsible for  
binding FimH10.

To address these questions, we first expressed in mammalian 
cells the whole GP2 branch as well as the corresponding region  
of UMOD and assessed their ability to selectively capture the  
lectin domain of FimH (FimHL) from an Escherichia coli peri-
plasmic extract. This showed that, as in the case of UMOD, the  
branch of GP2 is sufficient for interaction with FimHL (Extended 
Data Fig. 2).

We then obtained crystals of the GP2 branch, but experimen-
tal phasing of its 1.9-Å-resolution data was hindered by relatively 
high diffraction disorder in one direction and low crystal sym-
metry. However, molecular replacement with models generated by 
AlphaFold2 (ref. 11) allowed us to solve the structure, which was sub-
sequently used to phase two additional crystal forms diffracting to 
~1.4 Å resolution (Extended Data Figs. 3 and 4 and Supplementary 
Table 1). The electron density maps reveal that the GP2 branch is 
a protein module (henceforth referred to as ‘decoy module’) that 
consists of a β-hairpin stabilized by a disulfide bond (Cx48-Cy59), 
packed against a globular ‘D10C’ domain with a new fold includ-
ing two 310 helices, nine β-strands (βA–βI) and five intermolecular 
disulfides (C163-C8157, C285-C9172, C3107-C6145, C4113-C10177, 
C5138-C7146) (Fig. 1a and Extended Data Fig. 1). Notably, the 
extent of the latter and its C1-C8, C2-C9 disulfides are not compatible 

with the original boundaries of the D8C domain9; accordingly, GP2 
D10C is secreted comparably with the complete branch, whereas a 
D8C construct is barely expressed and not secreted (Fig. 1b).

The large majority of UMOD pathogenic mutations affect the 
protein’s branch and, in particular, the residues corresponding to the 
decoy module of GP2 (ref. 4). Because of 60% sequence identity to 
UMOD, the crystal structure of the latter immediately explains the  
effect of many substitutions affecting invariant positions (Fig. 1c–g 
and Supplementary Table 2). Remarkably, most of these mutations  
cluster within two structurally important regions of the decoy mod-
ule, the β-hairpin/D10C domain groove and the disulfide bond- 
rich region at the opposite end of D10C (Extended Data Fig. 5).

Helical reconstruction of UMOD filaments, together with 
focused refinement of the protein’s branch, recently yielded a com-
posite map of the full-length molecule (Extended Data Fig. 6); how-
ever, this information could only be confidently interpreted at the 
level of the filament core, due to the lack of a reliable model for the 
branch residues6. By combining the crystallographic information 
on GP2 with AlphaFold2 predictions, we could generate a model of 
the entire UMOD branch (epidermal growth factor (EGF) domains  
I–III + decoy module) that was fitted into the cryo-EM density 
and fused with the coordinates of the filament core to describe the  
complete protein (Fig. 2a and Supplementary Table 3).

Inspection of the fitted map revealed that, whereas the 
complex-type carbohydrate linked to D10C N232 (refs. 8,12) is 
exposed to the solvent, the high-mannose glycan attached to 
N275 (refs. 8,12) emerges from the groove between the β-hairpin 
and D10C, and packs against the EGF III/β-hairpin junction  
(Fig. 2b). This suggests that the architecture of the decoy module con-
tributes to maintaining the high-mannose structure of the UMOD 
N275 glycan, which is crucial for capturing FimH2,8. Consistent 
with this idea, the high-mannose carbohydrate can be fully cleaved  
by Endoglycosidase H (Endo H) only upon protein denaturation 
(Fig. 2c). Interestingly, although the GP2 branch also binds FimHL, 
its D10C domain cannot be glycosylated at the position correspond-
ing to UMOD N275 (R165). However, the presence of a GP2 glyco-
sylation site at N65 (ref. 13)—a residue far away in sequence from 
R165, but closely located to it within the β-hairpin/D8C groove 
(Extended Data Fig. 7a)—suggests that this residue may carry a 
high-mannose glycan equivalent to UMOD N275. In agreement 
with these considerations, introduction of an N65A mutation in the 
decoy module of GP2 impairs its interaction with FimHL (Extended 

Structure of the decoy module of human 
glycoprotein 2 and uromodulin and its interaction 
with bacterial adhesin FimH
Alena Stsiapanava1, Chenrui Xu2,3, Shunsuke Nishio   1, Ling Han   1, Nao Yamakawa4, Marta Carroni5, 
Kathryn Tunyasuvunakool6, John Jumper   6, Daniele de Sanctis   7, Bin Wu   2,3 and Luca Jovine   1,2 ✉

NATure STruCTurAL & MoLeCuLAr BioLogY | VOL 29 | MaRCH 2022 | 190–193 | www.nature.com/nsmb190

mailto:luca.jovine@ki.se
http://orcid.org/0000-0003-3420-2578
http://orcid.org/0000-0001-9310-4789
http://orcid.org/0000-0001-6169-6580
http://orcid.org/0000-0003-0391-8290
http://orcid.org/0000-0002-0883-8006
http://orcid.org/0000-0002-2679-6946
http://crossmark.crossref.org/dialog/?doi=10.1038/s41594-022-00729-3&domain=pdf
http://www.nature.com/nsmb


Brief CommuniCationNATUrE STrUcTUrAl & MOlEcUlAr BiOlOGy

Data Fig. 7b) and mass spectrometric analysis of the glycans 
attached to N65 detects the HexNAc2Hex5 oligomannose structure 
(Extended Data Fig. 8), indicating that UMOD and GP2 exploit a 
common molecular strategy to counteract bacterial adhesion.

To gain further insights into this process, which was previ-
ously visualized only at low resolution by cryo-electron tomogra-
phy8, we reconstituted in vitro the complex between UMOD and 
FimHL from uropathogenic E. coli (UPEC) UTI89 and studied it by 
single-particle cryo-EM (Extended Data Fig. 9 and Supplementary 
Table 3). Despite high conformational variability, this yielded a 
map with a nominal resolution of 7.4 Å, whose comparison with 
that of free UMOD showed density for a single copy of FimHL 
bound to the D10C region that presents the N275 glycan (Fig. 2d 
and Supplementary Table 3). Consistent with our binding studies 
(Extended Data Fig. 2b), the majority of the UMOD/FimHL inter-
face is clearly made by the decoy module; however, the density of 
the complex hints at the possibility that the C-terminal region of 
EGF III may also contribute to the interaction with the lectin.

Finally, our study sheds light on the basis of cast nephropa-
thy, a severe complication of multiple myeloma, by mapping the 
UMOD epitope recognized by monoclonal light chains/Bence Jones  

proteins (BJP)14 to the D10C βE/loop/βF region (Extended Data 
Fig. 1). Rationalizing previous biochemical studies of this medically 
crucial interaction14, the structure suggests that the epitope adopts 
a rigid conformation stabilized by its involvement in the C5-C7 and 
C3-C6 disulfides, close proximity to the N232 glycan and hydropho-
bic interaction with the C terminus of another subunit within the 
UMOD filament (Fig. 2a,b).

From a general point of view, this work provides an example of 
how deep learning techniques can substantially aid the X-ray crys-
tallographic and cryo-EM investigation of challenging biological 
samples, by providing accurate models that can be used to solve the 
phase problem and aid the fitting of low-resolution density maps, 
respectively.
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Methods
DNA constructs. Consistent with a cautionary note in UniProt entry P55259 
and sequence alignments with homologous sequences from other species, 
prediction of the signal peptide cleavage propensity of the human GP2 sequence 
with SignalP15 suggested that M8, rather than M1, corresponds to the protein’s 
initiator methionine. Moreover, sequence comparisons indicated that GP2 isoform 
1 residues V179–R181, which immediately follow the last residue encoded by 
GP2 exon 2, are not only absent in isoform α (UniProt P55259-3), but also lack 
counterparts in human UMOD (UniProt P07911). Based on this information, 
an open reading frame was designed that encoded GP2α residues M8–S181 
(corresponding to isoform 1 residues M8–T178 + D182−S184) followed by a 8× 
His tag. A corresponding gene and an equivalent UMOD construct, as well as GP2 
Δ31-59, Δ31-88 and N65A mutant genes, were also synthesized (GenScript) and 
all constructs were cloned into pLJ6, a mammalian expression vector derived from 
pHLsec3 (ref. 16).

For expressing the E. coli FimH lectin domain (FimHL; residues F22–T179), 
synthetic genes encoding non-tagged and C-terminally His-tagged versions of the 
protein (including its native signal peptide) were cloned into bacterial expression 
vectors pD451-SR and pD441-SR/CH (ATUM), respectively.

Protein expression and purification. For structural studies, the GP2 branch 
region was expressed in N-acetylglucosaminyltransferase I-deficient Expi293F 
GnTI- cells (ThermoFisher Scientific), transiently transfected with 25 kDa 
linear polyethylenimine (Polysciences) as described17,18. After capture from the 
conditioned medium by immobilized metal affinity chromatography (IMAC) 
and partial deglycosylation with Endo H19, recombinant GP2 was purified by 
size-exclusion chromatography (SEC) using a Superdex 75 Increase 10/300 GL 
column (GE Healthcare) and concentrated to 7 mg ml−1 in 20 mM Na-HEPES pH 
7.5, 150 mM NaCl.

For evaluation of relative protein secretion levels and FimHL binding 
experiments, branch region constructs and mutants thereof were expressed in 
HEK293T cells20 grown in DMEM medium supplemented with 4 mM l-Gln, 10% 
FBS and transiently transfected in 4 mM l-Gln, 2% FBS using 25 kDa branched 
polyethylenimine (Sigma-Aldrich)19,21.

For in vitro reconstitution of the UMOD–FimHL complex, native human 
UMOD was purified from a healthy 49-year-old male donor using the 
diatomaceous earth method22. His-tagged FimHL A27V from UPEC strain UTI89 
(ref. 23) was purified by immobilized metal affinity chromatography from the 
periplasmic extract of E. coli OverExpress C43(DE3) cells (Sigma-Aldrich) grown 
in mannose-free M9 minimal medium. The eluted protein, which was essentially 
pure by SDS–PAGE analysis, was then dialyzed against 20 mM Na-HEPES pH 7.5, 
150 mM NaCl at 0.7 mg ml−1 concentration. Finally, purified UMOD and FimHL 
were mixed at a molar ratio of 1:3, incubated for 30 min and dialyzed against 
10 mM Na-HEPES pH 7.0 (Extended Data Fig. 9).

For binding experiments, a crude periplasmic extract of E. coli OverExpress 
C43(DE3) expressing untagged FimHL was used (Extended Data Fig. 2a).

Protein analysis. Proteins separated by SDS–PAGE were detected with SimplyBlue  
SafeStain (Invitrogen/ThermoFisher Scientific) or transferred to nitrocellulose 
membranes (GE Healthcare) for immunoblotting with Penta•His BSA-free anti- 
5His mouse monoclonal (1:1,000; QIAGEN) and horseradish peroxidase- 
conjugated goat anti-mouse IgG Fc secondary antibody (1:10,000; Life Technologies/ 
ThermoFisher Scientific). Chemiluminescence detection was performed with 
Western Lightning ECL Plus (PerkinElmer). Protein deglycosylation under 
denaturing conditions using either Endo H or Peptide:N-glycosidase F (New 
England Biolabs) was carried out for 1 h at 37 °C, according to the manufacturer’s 
instructions. Gradient gels (4%–12%) were used for SDS–PAGE, except for 
the deglycosylation experiment shown in Fig. 2c where a 12% gel was used to 
maximize the separation between bands.

Protein binding experiments. Purified C-terminally His-tagged UMOD, GP2 and 
GP2 N65A decoy module proteins in 20 mM Na-HEPES pH 7.5, 150 mM NaCl 
(binding buffer) were separately incubated with IMAC beads (GE Healthcare) 
for 1 h at room temperature. E. coli periplasmic extract containing untagged 
FimHL, adjusted to the binding buffer, was then added and the resulting mixtures 
were incubated for 2 h at room temperature or overnight at 4 °C. After washing 
the IMAC beads with binding buffer, bound material was eluted with 20 mM 
Na-HEPES pH 7.5, 150 mM NaCl, 500 mM imidazole and subjected to SEC as 
described above. Peak fractions were analyzed by SDS–PAGE, and control SEC 
runs of the same decoy modules by themselves or a His-tagged version of FimHL 
were used to determine the elution volumes of the unbound proteins.

Protein crystallization. Crystallization trials of the GP2 branch region, carried 
out by sitting drop vapor diffusion using a mosquito robot (TTP Labtech), initially 
yielded triclinic plates that grew in one week at 293K in 25% (v/v) ethylene glycol. 
After we determined the structure of this crystal form, we obtained two additional 
forms that also had plate-like morphology but grew at 277K: orthorhombic crystals 
in 20% (v/v) 1,5-pentanediol, 10% (w/v) PEG 8K, 0.1 M GlyGly/AMPD pH 8.5, 
0.5 mM YCl3, 0.5 mM ErCl3, 0.5 mM TbCl3, 0.5 mM YbCl3 (condition E11 of the 

MORPHEUS II crystallization screen24 (Molecular Dimensions)); and monoclinic 
crystals in 5% (w/v) PEG 20K, 25% (w/v) 1,1,1-tris(hydroxymethyl) propane, 
0.1 M MOPSO/bis-tris pH 6.5, 1% (w/v) NDSB-195, 0.01 M spermine, 0.01 M 
spermidine, 0.01 M 1,4-diaminobutane, 0.01 M dl-ornithine (MORPHEUS II 
condition H4). Before data collection at synchrotron, crystals were fished directly 
from the crystallization drops and flash frozen in liquid nitrogen.

X-ray data collection and reduction. Datasets for the P1, P212121 and C2 crystal 
forms were collected from single specimens at 100 K at European Synchrotron 
Radiation Facility beamlines ID23-1 (ref. 25) (λ = 1.0052 Å), ID30B26 (λ = 0.9763 Å) 
and ID30A-3 (λ = 0.9677 Å), respectively, using MXCuBE3 (ref. 27). All data was 
processed with XDS28 (Supplementary Table 1), with high-resolution data cutoffs 
chosen on the basis of statistical indicators CC1/2 and CC*29,30. Although the P1 
crystals diffracted reproducibly to better than 3.0 Å resolution, a single specimen 
yielded data extending well beyond a Bragg spacing of 2.0 Å; unfortunately, 
probably because of the disorder, the diffraction extent of this particular crystal 
was severely underestimated by the data collection strategy software, so that we 
were only able to process the resulting data to 1.9 Å.

Experimental phasing attempts. Despite the workable resolution of its diffraction, 
the P1 crystal form suffered from disorder parallel to the b*c* planes, that is 
reflected by relatively high Rmerge and Rmeas values. Although this did not prevent us 
from ultimately solving the structure by molecular replacement (MR), it precluded 
multiple attempts to phase the data experimentally by sulfur-single wavelength 
anomalous dispersion. Parallel attempts to obtain usable derivative data from 
crystals soaked with Pt or Au compounds also failed, because of the apparent lack 
of specific binding sites for these heavy atoms. Similarly, no heavy atom bound 
to the C2 crystal form of the protein despite the fact that this was obtained in the 
presence of a mixture of different lanthanides and yttrium.

Structure solution by molecular replacement with AlphaFold2 models. 
AlphaFold2 (AlphaFold Monomer 2.0)11 was used to generate five independent 
models of residues V29–S181 of GP2α, with relative r.m.s. deviations (r.m.s.d.)  
of 0.6–1.7 Å. After removal of a low-confidence N-terminal region (residues  
V29–L44), visual inspection of the models suggested further trimming to residues 
D61–S181, which clearly belonged to a single globular domain (Extended Data  
Fig. 3a). The resulting coordinate sets (r.m.s.d. 0.1–0.2 Å), with per-residue 
pseudo-B factors corresponding to 100-(per-residue confidence (pLDDT11)), 
were combined into an ensemble that was used to phase the P1 data by MR 
with Phaser31. Using a search model r.m.s.d. variance of 1 Å, this found a single 
solution consisting of two molecules per asymmetric unit (LLG 1258, TFZ 31.6), 
whose correctness was readily confirmed by initial refinement (R 0.31, Rfree 0.36) 
and positive difference density for the N-acetylglucosamine (GlcNAc) residues 
attached to GP2 N65, N122 and N134 as well as part of the β-hairpin (Extended 
Data Fig. 3b,c). After one round of autobuilding in PHENIX32, the structure 
was completed by alternating manual rebuilding in Coot33 and ISOLDE34 with 
refinement using phenix.refine35. Protein geometry and carbohydrate structure 
validation was carried out with MolProbity36 and Privateer37, respectively, and data 
reduction, refinement and validation statistics calculated using phenix.table_one38 
are reported in Supplementary Table 1. Because of a lack of density for the residues 
making up the loop of the β-hairpin, the final model consists of GP2 residues S41–
G49 and H57–S181, as well as five GlcNAc residues attached to N65, N122 (chains 
A and B) and N134 (chain A only). Using these coordinates as a reference, the top 
ranked AlphaFold2 model had a Global Distance Test (GDT_TS) score of 94.9 (or 
97.2 if only the D10C domain is considered).

An ensemble of the two chains of a partially refined model of the P1 structure 
was used to phase the P212121 data (with one molecule in the asymmetric unit) 
by MR (LLG 8167, TFZ 41.7; initial R 0.23, Rfree 0.25); residues D61–S181 of the 
refined P212121 model were in turn used for MR phasing of the C2 data (LLG 8539, 
TFZ 82.9; initial R 0.24, Rfree 0.25). As expected on the basis of the P1 MR results, 
both the orthorhombic and monoclinic structures could, in principle, also have 
been solved using the initial AlphaFold2 ensemble (P212121: LLG 1325, TFZ 33.5; 
initial R 0.32, Rfree 0.35; C2: LLG 1232, TFZ 31.9; initial R 0.32, Rfree 0.34). After 
rebuilding, refinement and validation as described for the P1 crystal form, the final 
P212121 and C2 models contain amino acids Y42–S181 and L44–S181, respectively, 
as well as two GlcNac residues attached to N65 and N122; in addition, the 
orthorhombic model includes two residues belonging to the C-terminal His-tag, 
whereas the monoclinic one contains the GlcNac attached to N134.

Cryo-EM data collection. Data collection and processing details for full-length 
native human UMOD have been reported6.

For collecting cryo-EM data from the UMOD–FimHL complex (Supplementary 
Table 3), prepared as described in the section ‘Protein expression and purification’, 
the specimen (1.8 mg ml−1) was applied in 3-µl volumes onto glow-discharged Cu 
R2/2 holey carbon 300 mesh grids (Quantifoil). After blotting for 2 s, grids were 
plunged into liquid ethane cooled by liquid nitrogen using a Vitrobot Mark IV 
(ThermoFisher Scientific). Cryo-EM experiments were performed at the Cryo-EM 
Swedish National Facility, SciLifeLab, Stockholm. Videos were collected using 
fringe-free imaging and aberration-free image shift with the EPU data acquisition 
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software, on a Titan Krios electron microscope (ThermoFisher Scientific) 
operated at 300 kV, using a K3 camera equipped with a BioQuantum energy 
filter (Gatan-Ametek). Videos were taken at ×105,000 nominal magnification 
in counting mode with a dose rate of 15 e px−1 s−1 and a total dose of 40 e/Å2 
distributed over 40 subframes, gain-corrected and then compressed using video 
compression in RELION39. Motion correction with dose weighting was also 
performed in RELION40 within the Scipion software suite41.

Cryo-EM data processing. Processing of the cryo-EM data of the UMOD–FimHL 
complex followed the general workflow used for reconstructing the full-length 
UMOD filament6. First, contrast transfer function determination was carried out 
using CTFFIND in RELION. An in-house script designed specifically for filament 
picking (Cryo-EM-filament-picker)42 was then used to select end-to-end filament 
coordinates. After two-dimensional classification in cryoSPARC43, selected 
particle coordinates were transferred back to RELION for three-dimensional (3D) 
classification, 3D helical refinement, particle subtraction and final non-helical 
refinement and polishing. Specifically, starting from a total of 13,616 raw 
micrographs, 3,767,790 particles (helical segments with 70 Å step size) were 
auto-picked and extracted on the basis of motion correction and contrast transfer 
function estimation; based on two-dimensional classification quality evaluated 
with cryoSPARC, a subset of 1,139,808 particles was then selected for further 
processing. Because FimHL occupancy varied among filaments, segments with 
higher FimHL occupancy were selected during iterative RELION 3D classification 
runs. Finally, 225,819 homogeneous particles were subjected to auto-refinement 
and postprocessing. To improve the local density of the FimHL-binding region, we 
performed particle subtraction to mask out the UMOD helical core and continued 
local refinement in RELION. Ultimately, a density representing the UMOD 
branch–FimHL complex with an overall average resolution of 7.4 Å was obtained 
by auto-refining the subtracted particles with a UCSF Chimera44-generated mask 
that only covered the binding region (Extended Data Fig. 9 and Supplementary 
Table 3).

Cryo-EM map fitting, model refinement and validation. A complete atomic 
model of full-length UMOD was assembled in several steps. First, five independent 
models of the whole UMOD branch (residues D25–S191) were generated with 
AlphaFold2; all these models shared the same domain boundaries, fold and 
disulfide connectivity, with their overall r.m.s.d. (0.4–4.3 Å) simply reflecting 
differences in the orientation of EGF I–III (r.m.s.d. 0.2–0.4 Å) relative to the 
decoy module (r.m.s.d. 0.1–0.2 Å). Second, although the overall r.m.s.d. values 
between the AlphaFold2 models of the GP2 D10C domain and the corresponding 
experimental structures (average ~0.5 Å) were not much larger than those between 
the latter (average 0.1 Å), local differences could be observed at the level of the 
relatively flexible 310B/βB loop as well as a subset of side chains. To consider 
these alternatives while fitting the cryo-EM density of the UMOD D10C domain 
(62% sequence identical to that of GP2), the P212121 and C2 high-resolution 
structures of GP2 D10C were each used to generate five homology models of 
UMOD D10C using MODELLER45. The respective models with the best Discrete 
Optimized Protein Energy (DOPE) scores46 were then used as starting points for 
exploring different possible conformations by molecular dynamics in YASARA 
Structure47. Third, the top AlphaFold2 model and P212121/C2-structure derived 
homology models (r.m.s.d. 0.7/0.8 Å) of D10C were individually rigidly docked 
with UCSF Chimera into the 3D reconstruction of full-length UMOD (overall 
nominal resolution 4.7 Å)6, whose masking and postprocessing with RELION was 
optimized to obtain the best possible density for the D10C-containing region near 
the center of the map. The resulting map fit correlations of the AlphaFold2 model 
and the homology models were 0.884 and 0.892/0.896, respectively. Fourth, the 
placed AlphaFold2 model was locally rebuilt, taking into account—if available—
alternative possibilities suggested by the superimposed homology models. At this 
stage, we also connected the C terminus of D10C to the N terminus of the atomic 
model of the UMOD filament core (PDB ID 6TQK)6, consisting of the EGF IV 
domain and the ZP module (Extended Data Fig. 1a); rebuilt the C-terminal end of 
the ZP-C domain interacting with D10C6; and built the glycan chains attached to 
N232 and N275. The resulting coordinates were then subjected to global real-space 
and group ADP refinement in PHENIX48, essentially as described6 (CCmask 0.74; 
CCbox 0.79; CCpeaks 0.39; CCvol 0.72; mean CCcarbohydrates 0.62). Finally, the model was 
completed by fusing it with EGF I–III/β-hairpin coordinates extracted from the top 
AlphaFold2 model of the whole UMOD branch, flexibly fit into a cryo-EM map 
of the same protein region (overall nominal resolution 6.1 Å)6 using Namdinator49 
(CCmask 0.59; CCbox 0.76; CCpeaks 0.43; CCvol 0.56; mean CCcarbohydrates 0.60). Following 
further rebuilding and real-space refinement against a composite map of 
full-length UMOD generated by multibody refinement6 (Extended Data Fig. 6), 
performed using the starting model as a reference for generating torsion restraints, 
protein geometry and carbohydrate structure were validated using PHENIX50/
MolProbity (Supplementary Table 3) and Privateer; model-to-map validation 
was carried out with PHENIX (CCmask 0.75; CCbox 0.81; CCpeaks 0.48; CCvol 0.73; 
mean CCcarbohydrates 0.77). The final model consists of 1,127 protein residues, 
corresponding to a complete chain (chain A, D25–F587) and two half chains  
(chain B, S444–F587; chain C, D25–S444) that together recapitulate all the protein- 
protein interactions in the UMOD filament, as well as 84 N-glycan residues.

The model of the UMOD branch + EGF IV/FimHL complex was generated by 
manually docking the crystallographic structure of FimHL bound to trimannose 
(chains A and F of PDB ID 6GTW)51 into the difference density between the 
cryo-EM maps of the FimH-bound and free UMOD branch + EGF IV (calculated 
using TEMPy:DiffMap52 and masked around the decoy module region), so that the 
lectin made an equivalent interaction with the α1,3 branch of the high-mannose 
glycan attached to UMOD N275. After optimizing the position of FimHL 
against the difference map by rigid-body refinement, introducing A27V, S62A 
substitutions to match the sequence of FimH from UPEC UTI89 variant A27V and 
rebuilding the other residues of the N275 glycan, the whole complex was finally 
subjected to real-space refinement with restraints generated using the starting 
coordinates as a reference (Supplementary Table 3).

Sequence-structure analysis. Structure-based sequence alignments, generated 
using MAFFT53 as implemented in ConSurf54, were rendered with ESPript55. For 
calculating consensus information at different thresholds, a ConSurf alignment 
that sampled homologs of the GP2 branch domain with 35–95% identities was first 
pruned of incomplete sequences (yielding a final set of 129 aligned sequences) and 
then processed with MView56.

GDT_TS scores were calculated using the AS2TS server57 and possible 
structural similarities were assessed using Dali58. Secondary structure was assigned 
using STRIDE59; structural figures were generated with PyMOL (Schrödinger, LLC) 
and UCSF Chimera/ChimeraX60.

Site specific N-glycosylation analysis by liquid chromatography–tandem mass 
spectrometry. The His-tagged GP2 branch region purified from the conditioned 
medium of HEK293T cells was denatured, reduced and alkylated before digestion 
with either sequencing-grade AspN or with pepsin/chymotrypsin. The digests were 
analyzed on an Ultimate 3000 nanoLC system online coupled to a QExactive mass 
spectrometer (ThermoFisher Scientific). Raw data was analyzed by ByonicTM 
(Protein Metrics Inc.) set to identify glycopeptides from the fragmented parent ion. 
The acceptance criterion was a false discovery rate on the protein level below 1%. 
Peptide and glycan sequences were analyzed by ByonicTM from the higher-energy 
C-trap dissociation (HCD) spectra and verified manually.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The UniProt (https://www.uniprot.org/) IDs for hGP2 and hUMOD are P55259 
and P07911, respectively; the IDs of other sequences reported in the alignment 
of Extended Data Fig. 1b are Q9D733 (mGP2), Q91X17 (mUMOD), Q8WWZ8 
(hLZP), Q8R4V5 (mLZP), Q8N2E2 (hVWDE) and Q6DFV8 (mVWDE). The 
Electron Microscopy Data Bank (EMDB; https://www.ebi.ac.uk/emdb/) ID of the 
UMOD filament map used for assembling the composite map shown in this work 
is EMD-10553; the UMOD filament core and FimHL/trimannose coordinates used 
as starting models can be retrieved from the Protein Data Bank (PDB; https://
www.rcsb.org/) with IDs 6TQK and 6GTW, respectively. Structure factors and 
atomic models for the P1, P212121 and C2 crystal forms of the GP2 decoy domain 
have been deposited in the PDB with accession codes 7P6R, 7P6S and 7P6T, 
respectively. Cryo-EM density maps of full-length UMOD and the UMOD branch 
+ EGF IV/FimHL complex have been deposited in the EMDB with accession codes 
EMD-13378 and EMD-13794, respectively; the corresponding coordinates have 
been deposited in the PDB with accession codes 7PFP and 7Q3N. Source data are 
provided with this paper.

Code availability
The Python code for filament picking is available at: https://doi.org/10.5281/
zenodo.5807535.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Structure of the gP2 N-terminal branch and its relation with the corresponding regions of uMoD and additional mammalian 
proteins. a, Domain architecture of mature human GP2 and UMOD. Domains are indicated by their acronyms, except for UMOD epidermal growth factor 
(EGF) domains that are labeled according to their roman number, the single EGF domain of GP2 (corresponding to UMOD EGF IV) that is labeled as ‘E’ 
and the β-hairpin of the decoy module (‘β’). The UMOD D10C epitope recognized by Bence-Jones proteins (BJP)14 is shown as a green stripe. Black and 
magenta inverted tripods indicate the N-glycosylation sites of GP2 and UMOD, respectively, with the high-mannose chains attached to GP2 N65 (this 
study) and UMOD N2758,12 colored cyan. The position corresponding to the alternative 3’ splice site generating the β isoform of GP2 (T178 | D179)61 and 
the elastase cleavage site of UMOD (S291 | S292)62 are indicated by vertical blue and orange arrows, respectively. b, alignment of D10C domain sequences 
from human (h) and murine (m) homologues of GP2 and UMOD, as well as liver-specific zona pellucida protein (LZP/OIT3, a molecule that can also 
interact with UMOD in the kidney and urine63) and von Willebrand factor D and EGF domain-containing protein (VWDE; a protein involved in appendage 
regeneration in a variety of vertebrate species64). Identical residues are highlighted in white and shaded in red; conserved residues are red and marked by 
blue frames when clustered. Consensuses at different sequence identity thresholds, based on a comprehensive alignment of homologous sequences, are 
also reported (bold uppercase characters: amino acids with the same one-letter code; regular lowercase characters: l, [I,V,L]; h, [F,Y,W,H,I,V,L]; + , [H,K,R]; 
-, [D,E]; p, [Q,N,S,T,C,H,K,R,D,E]; u, [G,a,S]; s, [G,a,S,V,T,D,N,P,C]; t, [G,a,S,Q,N,S,T,C,H,K,R, D,E]; (.), any amino acid). GP2 secondary structure elements, 
rainbow-colored from blue (N-terminus) to red (C-terminus), and disulfide bond connectivity are shown above and below the alignment, respectively. 
Other elements are labeled as in (a), with a green box indicating the BJP epitope14. Black bold numbers above the alignment indicate hGP2 residues; light 
grey numbers between parentheses refer to the corresponding hUMOD residues. c, Cartoon representation of the GP2 decoy module, rainbow-colored 
following the same scheme used for the secondary structure elements of (b). Disulfide bonds are represented as grey sticks. d, Topology and disulfide 
connectivity diagram of the decoy module.
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Extended Data Fig. 2 | The isolated gP2 branch and the corresponding decoy module of uMoD bind FimHL. a, For assessing whether the lectin domain 
of FimH is able to bind in vitro to the branch of GP2 or the equivalent region of UMOD (corresponding to the respective decoy modules, see main text), 
untagged FimHL was expressed in E. coli and a crude periplasmic extract was prepared. n = 2. b, SEC analysis of the material eluted after incubating purified 
His-tagged GP2 or UMOD decoy modules bound to IMaC beads with the FimHL-containing E. coli periplasmic extract (magenta curves). In both cases, 
reducing SDS-PaGE of peak fractions and tandem mass spectrometry (MS/MS) of the corresponding ~15 kDa bands show the presence of complexes 
between the decoy modules and the bacterial adhesin, indicating that the former are able to selectively recognize the latter among the pool of periplasmic 
proteins. SEC elution profiles of the GP2 and UMOD decoy domains by themselves are also shown (light blue curves), and a low-molecular weight 
contaminant peak is indicated by *. GP2 decoy module, UMOD decoy module: n = 3; GP2 decoy module/FimHL, UMOD decoy module/FimHL, n = 2.  
c, Control SEC profile of unbound His-tagged FimHL with SDS-PaGE analysis of the peak. § indicates minor high-molecular weight contaminants eluting 
with or close to the void volume. n = 3.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | AlphaFold2 model phasing of the gP2 branch P1 X-ray data. a, Superposition of five alphaFold2 models of the GP2 N-terminal 
branch indicates the presence of three distinct units, with a central hairpin-like region (residues D45-F60; orange box) separating an N-terminal low-
confidence region (residues V29-L44; red box) from a C-terminal globular domain (residues D61-S181; green box). an ensemble corresponding to the 
latter was used as search model for MR. b-c, Electron density for an Endo H cleavage-derived N-acetylglucosamine residue attached to N122 (b) and the 
hairpin region (c), two GP2 elements not included in the MR search ensemble. Fourier maps at different stages of the structure determination process are 
shown, contoured at the indicated levels.
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L44L44

Extended Data Fig. 4 | Comparison of the predicted and experimental structures of the human gP2 branch region. The crystallographic models, shown 
as semi-transparent cartoons colored in black (P1), grey (P212121) and white (C2), are superimposed on the top alphaFold2 model, colored from blue to 
red according to a 100-(per-residue confidence (pLDDT11)) scale that ranges from 0 (blue; maximum confidence) to 100 (red; minimum confidence). 
Note how the low-confidence prediction for the N-terminal region of the GP2 branch matches the observations that the corresponding residues are largely 
structurally disordered in the different crystal forms of the protein (whose first resolved residues, S41/Y42 (P1 chains a/B), Y42 (P212121) or L44 (C2) 
are indicated) and apparently proteolytically removed from mature native GP265. Similarly, two protein regions that display relative structural flexibility 
in the GP2 crystals, the β-hairpin and part of the long loop connecting 310 helix B to conserved Cys 2 (white box), contain residues predicted with lower 
confidence by alphaFold2.
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Extended Data Fig. 5 | Pathogenic substitutions in the D10C domain affect clusters of highly conserved residues. a-b, GP2 D10C residues corresponding 
to UMOD amino acids mutated in kidney disease patients (panel a, red) are largely clustered into two highly conserved protein regions (panel b). 
Sequence conservation is represented using a color spectrum ranging from green (lowest conservation) to violet (highest conservation). c-g, alternative 
representation of the structural details shown in Fig. 1c–g, with residues colored by sequence conservation.
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Extended Data Fig. 6 | Assembly of the composite map of full-length uMoD. Multi-body refinement of the UMOD filament core plus D10C domain  
(left path) and the whole UMOD branch (right path) were performed separately. Helical symmetry was applied to the filament core plus D10C, after the 
best homogenous filamentous segments were selected based on 2D classes. Meanwhile, the particles with the better contrast, more extended branch 
features were independently selected, locally 3D classified and refined, without helical symmetry. The final composite map was assembled by merging 
copies of the branch with the filament core plus D10C.
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Extended Data Fig. 7 | inactivation of the N65 glycosylation site of gP2 impairs the interaction between the protein’s decoy module and FimHL.  
a, The FimH-binding high-mannose glycan attached to UMOD N275 is located in the groove between the β-hairpin and D10C domain moieties of the 
protein’s decoy module (left panel). although this sequon is not conserved in the decoy module of GP2, the groove of the latter contains a different, 
but closely spaced, N-glycosylation site at position 65 (right panel). b, SEC analysis of the material eluted after incubating an E. coli periplasmic extract 
containing untagged FimHL with wild-type or N65a mutant GP2 decoy modules immobilized on IMaC beads (left panels). Reducing SDS-PaGE analysis  
of the corresponding peak fractions (right panels) shows that FimHL binds to the wild-type GP2 decoy module but not to the N65a mutant. n = 2.
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Extended Data Fig. 8 | Mass spectrometric analysis of gP2 glycopeptides detects the oligomannose-5 structure attached to N65. Supporting MS2 
spectrum of precursor m/z 1170.46, 61DPCQNYTLL69, carrying oligomannose-5 (HexNac2Hex5). Prepared by asp-N digestion of the GP2 branch purified 
from HEK293T cells. N-glycan structures are depicted following the Consortium for Functional Glycomics (CFG) notation: HexNac, N-acetylglucosamine 
(blue square); Hex, mannose (green circle). The cysteine residue is carbamidomethylated. Detected peptide-backbone fragment ions are presented in the 
peptide sequence. Interestingly, complex-type carbohydrate structures were also found to be attached to N65. This is consistent with the observation that, 
although UMOD N275 and GP2 N65 are both located in the groove between the β-hairpin and the D10C domain of the respective decoy modules, N65 is 
relatively more exposed than N275 in the structure (Extended Data Fig. 7a), making the N65 glycan chains more susceptible to modification.
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Extended Data Fig. 9 | 3D reconstruction of the uMoD branch/FimHL complex. Identification, isolation and local refinement of a single UMOD branch 
unit bound to one copy of FimHL. after incubation with an excess concentration of FimHL, UMOD filaments were subjected to cryo-EM analysis. Following 
filament autopicking by an in-house script, highly heterogenous filament segments were sorted by performing cryoSPaRC 2D class runs, after binning. 
Segment coordinates from good 2D classes were then extracted and re-imported into RELION. after iterative 3D classification with and without applying 
helical symmetry, the segments with higher FimHL occupancy were selected and grouped into different sub-classes. Segments representing a single branch 
unit of the best UMOD/FimHL sub-class were extracted and used for 3D reconstruction of the density of UMOD bound to FimHL. In the bottom left panel, 
the extra density of FimHL in the UMOD branch/FimHL complex could be identified in the 2D class images. Red arrows point to the location of FimHL.
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Supplementary Table 1 

X-ray data collection, refinement and validation statistics

GP2 decoy module 
crystal form I (P1) 
(PDB 7P6R) 

GP2 decoy module 
crystal form II (P212121) 
(PDB 7P6S) 

GP2 decoy module 
crystal form III (C2) 
(PDB 7P6T) 

Data collection 
Space group P1 [1] P212121 [19] C2 [5] 
Cell dimensions 
    a, b, c (Å) 33.04, 46.53, 57.44 33.48, 59.50, 87.04 90.15, 33.66, 59.63 

    α, β, γ ()  68.750, 75.873, 72.398 90, 90, 90 90, 111.839, 90 

Resolution (Å) 52.9–1.90 (1.97–1.90)* 49.1–1.35 (1.39–1.35) 29.0–1.40 (1.47–1.40) 
22914 (2161) 38991 (2960) 32721 (4653) 
96.6 (91.4) 99.7 (98.2) 98.4 (96.8) 
3.5 (3.2) 6.0 (4.7) 6.9 (6.7) 
0.099 (0.509) 0.153 (2.318) 0.104 (3.379) 
0.118 (0.611) 0.167 (2.612) 0.112 (3.663) 
0.063 (0.333) 0.067 (1.180) 0.042 (1.396) 
20.1 13.2 18.9 
8.8 (2.6) 7.0 (0.7) 8.6 (0.6) 
0.99 (0.89) 1.00 (0.40) 1.00 (0.48) 

No. unique reflections 
Completeness (%) 
Redundancy 
Rmerge 
Rmeas 
Rpim 
Wilson B-factor (Å2) 
I / σI 
CC1/2  
CC* 1.00 (0.97) 1.00 (0.75) 1.00 (0.81) 

Refinement 
Resolution (Å) 52.9–1.90 (1.97–1.90) 49.1–1.35 (1.39–1.35) 29.0–1.40 (1.47–1.40) 
No. reflections 22860 (2157) 38932 (2921) 32522 (4534) 
No. free reflections 1579 (152) 2027 (153) 2018 (280) 
Rwork 0.233 (0.275) 0.194 (0.422) 0.194 (0.514) 
Rfree 0.280 (0.313) 0.224 (0.429) 0.223 (0.518) 
No. non-H atoms 2400 1389 1288 
    Protein 2061 1122 1067 
    Ligand/ion 106 35 87 
    Water 233 232 134 
No. protein residues 265 142 138 
B-factors 28.7 18.5 31.3 

Protein 27.9 16.5 28.6 
Ligand/ion 38.7 18.2 53.4 
Water 31.2 28.2 38.4 

R.m.s. deviations
Bond lengths (Å) 0.007 0.004 0.003 

Bond angles () 0.73 0.72 0.67 

Validation 
    MolProbity score 1.23 0.95 0.66 
    Clashscore 4.59 1.83 0.45 
    Rotamer outliers (%) 0.0 0.0 0.0 
Ramachandran plot  
    Overall Z-score -1.29 ± 0.44 -1.47 ± 0.55 -1.12 ± 0.60
    Favored (%) 98.4 98.6 98.5
    Allowed (%) 1.6 1.4 1.5
    Disallowed (%) 0.0 0.0 0.0

* Values in parentheses are for highest-resolution shell
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Supplementary Table 2 

Pathogenic UMOD D10C domain missense mutations 

 

 

UMOD 
mutation 

 

Equivalent 
GP2 residue* 

 

Predicted mutation effect based on structural information  
 

Disease 
reported§ 

 

Reference 

 

 

D172H 
 

 

D61 
 

Affects the relative orientation of the β-hairpin and D10C 
domain by disrupting the salt bridge between D172 and K265 
(K155 in GP2) 

 

TN 
 

66 

P173L 
P173R 

P62 The mutated residue clashes against invariant W202 (W92 in 
GP2), affecting the interface between the D10C domain and the 
β-hairpin  

UAKD 

FJHN 
4 
67 

C174R C163 Destroys conserved disulfide bond C1-C8 UAKD 68 

R185C 
R185G 
R185H 
R185L 
R185S 

R74 Disrupts the interaction between helix 310B and loop 310B-βB  TN 

FJHN 
TN 
ADTKD 
FJHN 

66 
69 
66 
70 
71 

C195F 
C195Y 

C285  Destroys conserved disulfide bond C2-C9 FJHN 
FJHN 

72 
73 

D196N 
D196Y 

D86 Disrupts the interaction between loop 310B-βB and helix 310B FJHN 
FJHN 

69 
74 

W202C 
W202S 

W92 Disrupts the interaction between the D10C domain and the β-
hairpin 

UAKD 
FJHN 

4 
72 

R204G 
R204P 

R94 Disrupts the cation-π interaction with βG Y271 (Y161 in GP2) 
and affects the interface between the 310A-βA region and the 
D10C domain β-strand core  

FJHN 
TN 

71 
66 

G210D 
G210S 

G100 The mutated residue clashes against the C-terminal end of 
D10C that includes β-strand I 

UAKD 
TN 

4 
66 

R212C R102 Interferes with correct disulfide bond formation UAKD 75 

C217G 
C217R 
C217W 

C3107  Destroys conserved disulfide bond C3-C6 

 

 

FJHN, TN 
FJHN 
FJHN 

66,71 
76 
69 

C223R 
C223Y 

C4113 Destroys conserved disulfide bond C4-C10 FJHN 
FJHN 

69 
77 

T225K 
T225M 

T115 Disrupts hydrogen bonding between the Thr hydroxyl group and 
main chain atoms; introduces clashes with β-strands D/H 

MCKD2 
FJHN 

78 
71 

M229R M119 Disrupts D10C hydrophobic core FJHN/MCKD 79 

W230R W120 Disrupts a key D10C residue whose aromatic side chain lies 
between the C3-C6 and C5-C7 disulfides 

UAKD 80 

P236L 
P236Q 
P236R 
P236S 

P126 Disrupts the interaction between loop βD-βE and the D10C 
domain β-strand core 

FJHN 
FJHN 
FJHN 
UAKD 

72 
81 
82 
4 

C248S 
C248W 

C5138  Destroys conserved disulfide bond C5-C7 

 

UAKD 

MCKD2 
80 
78 

H250L 
H250Q 

H140 Disrupts the packing of the His ring against the C3-C6 disulfide 
(on the opposite side of W230 (GP2 W120) 

TN 
TN 

66 
83 

C255Y C6145  Destroys conserved disulfide bond C3-C6 FJHN 84 

C256G 
C256Y 

C7146  Destroys conserved disulfide bond C5-C7 FJHN 
UAKD 

85 
75 

C267F C8157 Destroys conserved disulfide bond C1-C8 MCKD2, FJHN 86 

G269C G159 Interferes with correct disulfide bond formation and the β-turn 
between strands βF and βG 

UAKD 4 

G270C G160 Interferes with correct disulfide bond formation and the β-turn 
between strands βF and βG 

UAKD 87 

V273F 
V273L 

V163 Introduces clashes into the hydrophobic core FJHN/MCKD 
TN 

79 
66 

Y274C 
Y274H 

Y164 Destabilizes the structure of the βG strand, carrying the UMOD 
high-mannose glycan and, in the case of Y274C, may also 
interfere with correct disulfide bond formation 

UAKD 80 

C282R 
C282S 

C9172  Destroys conserved disulfide bond C2-C9 FJHN 
UAKD 

71 
4 

L284P L174 Affects closely located disulfide bond C2-C9 UAKD 4 

C287F 
 

C10177 
 

Destroys conserved disulfide bond C4-C10 
 

ADTKD 
 

88 
 

 

 

 

* Residues shown in Fig. 1c-g and Extended Data Fig. 5c-g are highlighted in bold 
§ ADTKD, Autosomal Dominant Tubulointerstitial Kidney Disease; FJHN, Familial Juvenile Hyperuricemic Nephropathy; MCKD, Medullary Cystic 
Kidney Disease; TN, Tubulointerstitial Nephritis; UAKD, Uromodulin-Associated Kidney Disease 
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Supplementary Table 3 

Cryo-EM data collection, refinement and validation statistics 
 

 
 

 

 Full-length UMOD 
 

(EMD-10553 + EMD-13378) 
(PDB 7PFP) 

 

UMOD branch + EGF IV/ 
FimHL complex 
(EMD-13794) 
(PDB 7Q3N)  

 
 

Data collection and processing   

Magnification    130,000x 105,000x 
Voltage (kV) 300 300 
Electron exposure (e–/Å2) 39.6 40 
Defocus range (μm) -1.5 to -3.5 -1 to -3 
Pixel size (Å) 1.06 0.84 
 

Body 
 

Filament core + 
D10C domain 

 

Branch 
 

 

 

Symmetry imposed 
 

Helical (with 
62.5 Å rise, 
180.0° twist) 

 

Non-
helical 

 

Helical (initial; with 
65.2 Å rise, 
180.0° twist); 
non-helical (final) 

 

Initial particle images (no.) 
 

412,322 
 

412,322 
 

3,767,790 
Final particle images (no.) 288,403 114,206 225,819 
Map resolution (Å) 
    FSC threshold 

3.35 
0.143 

6.1 
0.143 

7.4 
0.143 

Map resolution range (Å) 3.0–4.2 5.0-6.8 6.4–7.9 
 

 

Refinement   

Initial models used (PDB codes) PDB 6TQK, 
AlphaFold2 model, 
PDB 7P6R/7P6S/7P6T 

PDB 7PFP, 
PDB 6GTW 

Model resolution (Å) 
    masked 
    unmasked 
    FSC threshold 

 
4.1 
4.4 
0.143 

 
8.3 
8.5 
0.143 

Map sharpening B factor (Å2) -200 -150 

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Carbohydrate residues 

 
9,582 
1,127 
84 

 
3,599 
451 
20 

B factors (Å2) 
    Protein 
    Carbohydrate residues 

 
315 
406 

 
404 
291 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.005 
0.845 

 
0.003 
0.672 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
1.83 
4.08 
2.4 

 
1.71 
9.47 
0.5 

 Ramachandran plot 
    Overall Z-score 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
-1.66 ± 0.24 
94.9 
5.1 
0.0 

 
-0.74 ± 0.37 
96.6 
3.4 
0.0 
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PHENIX (phenix.autobuild, phenix.refine, phenix.table_one) 1.19.2_4158, dev_4282; Privateer MKIII-MKIV; PyMOL 2.4.2; RELION 3.0.8; Scipion 
3.0.9; STRIDE 1.0; TEMPy:DiffMap 2; UCSF Chimera 1.11-1.15; UCSF ChimeraX 1.1-1.2; XDS Feb 5, 2021 BUILT=20210322; YASARA Structure 
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The UniProt (https://www.uniprot.org/) IDs for hGP2 and hUMOD are P55259 and P07911, respectively; the IDs of other sequences reported in the alignment of 
Extended Data Fig. 1b are Q9D733 (mGP2), Q91X17 (mUMOD), Q8WWZ8 (hLZP), Q8R4V5 (mLZP), Q8N2E2 (hVWDE) and Q6DFV8 (mVWDE). The Electron 
Microscopy Data Bank (EMDB; https://www.ebi.ac.uk/emdb/) ID of the UMOD filament map used for assembling the composite map shown in this work is 
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EMD-10553; the UMOD filament core and FimHL/trimannose coordinates used as starting models can be retrieved from the Protein Data Bank (PDB; http://
www.rcsb.org) with IDs 6TQK and 6GTW, respectively. 
Structure factors and atomic models for the P1, P212121 and C2 crystal forms of the GP2 decoy domain have been deposited in the PDB with accession codes 7P6R, 
7P6S and 7P6T, respectively. Cryo-EM density maps of full-length UMOD and the UMOD branch + EGF IV/FimHL complex have been deposited in the EMDB with 
accession codes EMD-13378 and EMD-13794, respectively; the corresponding coordinates have been deposited in the PDB with accession codes 7PFP and 7Q3N.
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Life sciences study design
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Sample size No statistical methods were used to predetermine sample size. 
For structure determination of the GP2 decoy module by X-ray crystallography, we measured diffraction from specimens that belonged to 
three different crystal forms (P1, P2(1)2(1)2(1) and C2). Using crystals harvested from multiple crystallization drops, we screened 119 samples 
and collected 13 P1, 15 P2(1)2(1)2(1) and 3 C2 datasets. The datasets belonging to each space group were then ranked by resolution and 
quality (based on the statistical indicators reported in Supplementary Table 1), and the best ones (which were processed to resolutions of 1.9 
Å, 1.35 Å and 1.4 Å, respectively; Supplementary Table 1) were used for structure solution by molecular replacement and refinement. 
For cryo-EM analysis of full-length UMOD and the UMOD branch/FimH(L) complex, we screened >20 grids of each sample at 0.8-1.8 mg mL-1 
concentrations. The datasets used for structure determination consisted of 2,300 and 13,616 raw micrographs, respectively, from which 
412,322 and 3,767,790 filaments were picked and used for 2D classification. The number of particles used in the final reconstructions was 
288,403 (UMOD filament core + D10C domain), 114,206 (UMOD branch) and 225,819 (UMOD branch/FimH(L)) (Supplementary Table 3). This 
was sufficient to assemble a composite map of full-length UMOD with a nominal resolution of 6.1 Å, and to obtain a map of the UMOD 
branch/FimH(L) complex with a nominal resolution of 7.4 Å. 
For biochemical experiments, we used amounts and concentrations of proteins that provided sufficient signal-to-noise ratios to obtain 
unambiguous results, based on previous knowledge of the corresponding experimental setups.

Data exclusions As in the case of all single-crystal X-ray diffraction experiments, two high resolution choices were made for each dataset that could have at 
least potentially excluded part of the weakest reflections: first, a crystal-to-detector distance was chosen, based on an initial resolution 
estimate made by the beamline data collection/processing software; second, a more accurate high-resolution cutoff was chosen, based on 
the mean I/σI and CC(1/2) values obtained upon manual processing of the datasets. The latter choice was made following the established 
criteria described in PMIDs 23793146 and 26209821 (Methods-associated references 29 and 30). 
Processing of the cryo-EM data for full-length UMOD has already been described in PMID 33196145 (reference 6 of the manuscript). For 
determining the structure of the UMOD branch/FimH(L) complex by cryo-EM, we only processed micrographs with an estimated resolution 
better than 8 A. As also detailed in the Methods, subsequent particle exclusions were performed at three different stages: (1) starting from a 
total of 13,616 raw micrographs, 3,767,790 helical segments were auto-picked and extracted on the basis of motion correction and CTF 
estimation; (2) based on 2D classification quality evaluated with cryoSPARC, a subset of 1,139,808 particles was then selected for further 
processing; and (3) because FimH(L) occupancy varied among filaments, segments with higher FimH(L) occupancy were selected during 
iterative RELION 3D classification runs, resulting in 225,819 homogeneous particles that were subjected to auto-refinement and 
postprocessing. 
Finally, no data was excluded in conjunction with the biochemical experiments described in this manuscript.

Replication Although the structures of the three crystal forms of the GP2 decoy module were obtained from diffraction data collected from single crystals 
(as commonly done in X-ray crystallography), as detailed in the section “Sample size” several specimens were screened and measured for 
each of them. For each crystal form, all of these samples were consistent in terms of morphology, space group and unit cell dimensions. Most 
importantly, the structures of the three different crystal forms of the protein are essentially equivalent (average Cα RMSD 0.6 A). 
Cryo-EM single particle analysis averages independent particle observations, and – as reported in Supplementary Table 3 – 288,403 and 
225,819 particles were averaged to yield the final 3D reconstructions of full-length UMOD and the UMOD branch/FimH(L) complex, 
respectively. 
Biochemical experiments were successfully reproduced as detailed in the respective figure legends. Specifically, n=3 for the experiments 
shown in Fig. 1b, Fig. 2c, Extended Data Fig. 2b (GP2 decoy module, UMOD decoy module), Extended Data Fig. 2c and n=2 for the experiments 
of Extended Data Fig. 2a, Extended Data Fig. 2b (GP2 decoy module/FimH(L), UMOD decoy module/FimH(L)) and Extended Data Fig. 7b (GP2 
decoy module/FimH(L), GP2 decoy module N65A/FimH(L)).

Randomization X-ray crystallography: random assignment of reflections to working or free sets was automatically performed by PHENIX (P1 data) or XDS 
(P2(1)2(1)2(1) and C2 data). 
Cryo-EM: The vitrified UMOD filaments (free or bound to FimH) used for structure determination by cryo-EM adopt random orientations on 
the XY plane of the EM grids, although – as previously described in PMID 33196145/reference 6 of the manuscript – they are significantly less 
randomly distributed along Z due to the fact that they tend to lie flat on the grids themselves. Assignment of particles into random half 
datasets was automatically performed by RELION during 3D reconstruction. 
Biochemical experiments: these experiments did not involve or require randomization.

Blinding Blinding was not applicable to the type of data that was analyzed in this study. In particular, knowledge of the identity of the molecules under 
investigation was required to express them, purify them and determine their structure, because the success of all these procedures depends 
on information (primary sequence, post-translational modifications etc.) that is specific to each experimental sample.
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Palaeontology and archaeology
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Clinical data
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary antibody: Penta-His Antibody, BSA-free (QIAGEN, Cat. No. 34660, Lot 157046697). 

Secondary antibody: Goat anti-Mouse IgG Fc Secondary Antibody, HRP (Invitrogen, Cat. No. A16084, Lot 62-47-012318).

Validation The QIAGEN Penta-His Antibody is an anti-(H)5 mouse monoclonal for the “highly specific detection of C-terminal, N-terminal and 
internal His tags”. As described on the product’s web page (https://www.qiagen.com/se/products/discovery-and-translational-
research/protein-purification/tagged-protein-expression-purification-detection/anti-his-antibodies-bsa-free/?catno=34660) and in 
the QIAexpress® Detection and Assay Handbook (Fourth Edition/July 2015) that can be downloaded from the same URL, this 
antibody recognizes its epitope with nanomolar affinity, can detect ~50 pg protein in Western blots (using a chemiluminescent 
substrate) and has been validated against many different proteins. We have abundantly used it in our previous work (see for example 
PMID 26850170), and repeatedly validated it by also using it to probe, as negative controls, conditioned media samples from cells 
that that do not express His-tagged protein.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T: laboratory of Prof. A. Radu Aricescu (University of Oxford, UK; now at the MRC Laboratory of Molecular Biology, 
Cambridge, UK) (PMID 3031469); the commercial source for this cell line was ATCC cat. no. CRL-3216, RRID CVCL_0063. 
Expi293F GnTI-: Thermo Fisher Scientific cat. no. A39240.

Authentication Cell line authentication was performed by the commercial sources described above, which guarantee their authenticity; no 
additional authentication was performed by either Prof. Aricescu or our laboratory. However, even though we did not verify 
cell line identities genetically, the results reported in this manuscript and other work in the laboratory showed that the type 
of glycosylation of the recombinant proteins expressed in these cell lines was consistent with their expected genetic 
background. Namely, enzymatic deglycosylation and/or mass spectrometric analysis showed that the glycans attached to 
recombinant proteins expressed in HEK293T were mostly complex-type (except in notable cases such as UMOD N275 (Fig. 
2c) and GP2 N65 (Extended Data Fig. 8)), whereas those attached to proteins expressed in Expi293F GnTI- cells were high-
mannose-type.

Mycoplasma contamination Each cell line was tested for mycoplasma contamination by the respective source. We confirmed that the HEK293T cell line 
was mycoplasma-free by using a PCR Mycoplasma Test Kit II (Applichem cat. no. A8994).

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Human research participants
Policy information about studies involving human research participants

Population characteristics The research participant is a healthy male, who was 49 year old at the time of sample collection.

Recruitment The participant is one of the authors of the manuscript (L.J.), who received no compensation.

Ethics oversight No ethical approval was deemed necessary by the participant's department (Karolinska Institutet, Department of Biosciences 
and Nutrition), as he used his own urine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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